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The LACC High School Math Contest

Los Angeles City College has offered the High School
Math Contest almost every year for nearly 60 years.

<www.lacitycollege.edu/academic/departments/
mathdept/aboutcontest.html>

The contest is open to all students in Southern California.

The talk this year was about π and a proof sketch that π is
irrational. I invited the students to fill in the details later.

This online companion to that talk sketches a proof that e
is transcendental—with the same challenge!
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Ray Redheffer was a Professor of Mathematics at UCLA
1950–1991.

I attended his lecture about e at UCLA in 1955.

I recalled the core ideas of the proof, and so can you.

I’ll present a proof sketch for you to fill in.

It’s a nice rigorous exercise in basic calculus.

Work it out, then show it to your class!
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Ray was physically fit into his eighties.

Ray died of cancer in 2005 at age 84.
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He was a terrific mathematician (over 200 publications),
but much else besides.

• He encouraged students of all ages and gave popular
lectures at public schools.

• He created many of the exhibits in the famous Eames
Mathematica exhibition.

• He and Heddy built their own home.

• He could do a one-arm chin-up.

• He played classical music on his grand piano.

• He could recite long poems from memory.
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Here is what we will prove in outline.

Theorem. e is transcendental (not an algebraic number), i.e.,
not a solution of an algebraic equation with integer coefficients.

In other words,

• e satisfies no algebraic equation with integer coefficients:

a0en + a1en−1 + a2en−2 + · · ·+ an−1e + an 6= 0

• The first proof was by the French mathematician Claude
Hermite (1873); our proof requiring elementary calculus is
based on Hilbert’s simplification.∗

∗ See reference.
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The key to the proof is an amazing integral.

You’ll find that it’s not hard to remember:

M(p) =
1

(p − 1)!

∫ ∞

0
e−t tp−1[(t − 1)(t − 2) · · · (t − n)]pdt

where p is a large prime that you will choose at the end.

The proof manipulates M(p) using basic calculus.

That’s how I remembered the proof after learning the bare
outline, and you can, too.
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Here’s something you need to know.

This can be proved easily using integration by parts:∫ ∞

0
e−t tkdt = k ! k ∈ N0

∗

So, for prime integer p,

1
(p − 1)!

∫ ∞

0
e−t tp−1tkdt =

{
m(p), k ≥ 1

m̄(p), k = 0

}
(1)

Where: m(p) denotes an integer multiple of p, and
m̄(p) denotes an integer non-multiple of p.

* You may recognize this “factorial” integral as Γ(k + 1).
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Here’s the bare outline, a proof by contradiction.

We suppose there are integers a0, . . . , an such that,

a0en + a1en−1 + a2en−2 + · · ·+ an−1e + an = 0

Define M = M(p), then split it into two parts so that:

M = e−kMk + e−kεk , ε0 ≡ 0 (2)

a0Mn +a1Mn−1 +a2Mn−2 + · · ·+an−1M1 +anM0 +

a0εn + a1εn−1 + a2εn−2 + · · ·+ an−1ε1 = 0

The crux is to choose Mk and εk to make sure the row of Ms is
a non-zero integer, and the row of εs is very small—the
contradiction!
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Prepare to split M(p) into two parts.

By definition M = M(p), and from above M0 must equal M:

M =
1

(p − 1)!

∫ ∞

0
e−t tp−1[(t − 1) · · · (t − k) · · · (t − n)]pdt

Let T = t − k , and change variables (for k ∈ {1, 2, . . . , n}):

M =
e−k

(p − 1)!

∫ ∞

−k
e−T (T + k)p−1[· · · T · · · ]pdT

To clarify operations, move e−k to the other side:

ekM =
1

(p − 1)!

∫ ∞

−k
e−T (T + k)p−1[· · · T · · · ]pdT
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Now do the split.

ekM =
1

(p − 1)!

∫ ∞

−k
e−T (T + k)p−1[· · · T · · · ]pdT

Define the split, for k ∈ {1, 2, . . . , n} by,

εk =
1

(p − 1)!

∫ 0

−k
e−T (T + k)p−1[· · · T · · · ]pdT

Mk =
1

(p − 1)!

∫ ∞

0
e−T (T + k)p−1[· · · T · · · ]pdT

The case for k = 0 was dealt with above. Complete the proof
by showing that (1) M0 = m̄(p), (2) Mk = m(p), and (3) εk → 0
as p →∞. (Refer to the bare outline and Equations (1) & (2) on
previous slides.)
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Here’s some basic analysis you might use:

• et ≡ 1 + t
1! + t2

2! + t3

3! + · · · (converges for all t)

• tk

k! → 0 as k →∞ (because the series converges)

• et > tk

k! (for all t > 0 and integers k ≥ 0)

• limt→∞ e−t tk = 0 (because et t−k > t(k+1)

(k+1)! · t
−k = t

(k+1)! )

• d
dt e

−t = −e−t

•
∫∞

0 e−tdt = −e−t |∞0 = −(e−∞ − e−0) = 1

• Integration by parts:
∫

udv = uv −
∫

vdu
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Here’s a scheme to remember the proof:

1) Remember the amazing integral,

M =
1

(p − 1)!

∫ ∞

0
e−t tp−1[(t − 1)(t − 2) · · · (t − n)]pdt

and suppose there are integers a0, . . . , an such that,

a0en + a1en−1 + a2en−2 + · · ·+ an−1e + an = 0

2) Split M into two parts, M = e−kMk + e−kεk , such that,

a0Mn +a1Mn−1 +a2Mn−2 + · · ·+an−1M1 +anM0 +

a0εn + a1εn−1 + a2εn−2 + · · ·+ an−1ε1 6= 0
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A challenge for the contestants:

If you know basic calculus,
try filling in the details of this proof!

http://mikeraugh.org

You can contact me at,

Michael.Raugh@gmail.com
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