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Catenary: Derived from Latin Word for Chain, Catena

Internet
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Some History

1638, Galileo discussed the hanging-chain problem.

1690, Jacob Bernoulli published a challenge to solve the
problem within 1 year.

1691, Leibniz and Johann Bernoulli published the first solutions.

1761, Johann Heinrich Lambert introduced hyperbolic functions
and named them:

coshx =
ex + e−x

2
sinhx =

ex − e−x

2
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Leibniz’s solution was presented as
a classic “Ruler & Compass” construction.

Paradox?
The Construction is not possible because e is transcendental!

And yet it is correct!

It reveals analytical knowledge of the exponential function,
and it depicts a hyperbolic cosine.

(70 years before Lambert!)

Leibniz did not publish the derivation of his construction.
(It was communicated in a private letter.)

And so our story begins....
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Analytic Formulation of the Catenary

We can express the catenary in terms of a hyperbolic cosine:

y = a cosh
x

a
.

Or in terms of exponentials:

y = a · e
x
a + e−

x
a

2
.

The curve is bilaterally symmetric about the y-axis,

and the lowest point is at (0, a).
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Leibniz’s Representation of the Catenary:
A Classical Ruler & Compass Construction
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The segments D and K are assumed given.

Leibniz uses only their ratio:
d

k
.

If the ratio is not constructable, then neither is the curve.

But D and K are given, so their ratio could be anything.

This fact can make a fictitious “construction” correct,
(in theory).

This resolves the paradox for Analysts but not for Geometers.
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First Steps of the Construction

DK

O

A

N (N)

Draw: (1) horizontal axis, (2) origin O and vertical axis;
(3) choose OA as unit, (4) mark unit lengths on horizontal axis.
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Constructing the “Logarithmic Curve”

DK

N (N)O

A

Ordinates over N & O and O & (N) are in ratio K:D.
Middling ordinates are determined by geometric means.
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The “Logarithmic Curve” in Cartesian Coordinates
(Represented as an Exponential Curve)

Given two points (x1, y1) and (x2, y2), get a new one:

(
x1 + x2

2
,
√
y1y2

)

The construction yields dense points on the curve,

y(x) = a

(
d

k

)x/a

(x constructible)
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Construction of the “Catenary”

N (N)O

A

C (C)

As constructed: C(x) =
rx + r−x

2
, with a = 1 and r =

d

k
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Leibniz’s “Catenary” is Built on an Exponential Curve.

N (N)O

A

C (C)

Catenary Logarithmic Curve

z(x) =
a

2
·

{(
d

k

) x
a

+

(
d

k

)− x
a

}
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Leibniz’s “Catenary” in Cartesian Coordinates

A true catenary must be of the form:

z(x) = a · e
x
a + e−

x
a

2

Leibniz needed the ratio d/k = e.

In effect, that is what he used, revealed in his figure.

Leibniz’s catenary is not constructible, in the sense of Euclid!
But it does correctly characterize the catenary!

Leibniz accepted curves based on analysis vs only those
allowed in Cartesian geometry.
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Two Examples Requiring a True Catenary: d/k = e

N (N)O

A

C (C)

Ra

b

b

Segment AR is equal in length to arc ĈA.
Tangent at (C) follows from fact that ∠b is the complement of ∠a.

(y = coshx)
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For Fun: The Tractrix is the Involute of the Catenary.

N O

A

C (C)

Ra

bb

Tractrix
    Point

Unit tow bar

Catenary

Tow track

Rotate the arc-length triangle to trace a tractrix.
(A problem solved by Leibniz later, not in his figure.)
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How did Leibniz arrive at his solution?

He explained his derivation in a letter:

To Rudolf Christian von Bodenhausen, August 1691, with
attached Latin text, “Analysis problematis catenarii”, in G. W.
Leibniz, Sämtliche Schriften und Briefe, series III, volume 5

(2003), p. 143-155

Leibniz does not mention e explicitly. Instead he uses a
differential equation for the natural logarithm.

(Thanks to Siegmund Probst)
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A Derivation Based on Leibniz Argument, but Simpler:

Leibniz deduced, as did Bernoulli (see Ferguson), that:

dy

dx
= y′ =

s(x)

a
=⇒ dx =

a dy√
y2 + 2ay

(s = arc length, a constant)

Setting z = y + a, Leibniz inferred s =
√
z2 − a2

Here I depart from Leibniz to write: z2 − s2 = a2,

and let a = 1: (z − s)(z + s) = 1.
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A clue: (z − s)(z + s) = 1.

The catenary is bilaterally symmetric.

And for P ·Q = 1,

lnP and lnQ are also symmetric about the origin.

This hints at a role for ex, but y = ex isn’t symmetric.

So symmetrize: Z =
ex + e−x

2
,

and find S such that S2 = Z2 − 1:

Solution: S =
ex − e−x

2
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Z and S satisfy necessary conditions, but
we also need that S = arc length.

Z and S satisfy these equations:

(Z − S)(Z + S) = 1, and
dZ

dx
= S

But does S = arc length?

YES, because of these definitions and obvious results:

Z = coshx ≡ ex + e−x

2
, S = sinhx ≡ ex − e−x

2

dc

dx
= s,

ds

dx
= c, Z2 − S2 = cosh2− sinh2 x = 1
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Use the above to validate constructions for the tangent and
arc length:

The construction for the tangent implies:

Z ′(x) =
√
Z2 − 1

And arc length follows because,

S =
∫ √

1 + Z ′2 dx =
∫
coshx dx = sinhx =

√
Z2 − 1

The coordinates (x, Z) represent a point C on the catenary.

Integration is over the interval from (0, 1) to (x, Z).
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Conclusion

In 1761 Lambert named the “Hyperbolic Cosine”:

y =
ex + e−x

2
.

In 1691 Leibniz had already called it the Catenary!

Leibniz used conventional constructions to exhibit curves,
but he relied on analysis as well.

At the time of Leibniz, the Cartesian canon of construction
began yielding to the tools of calculus.
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A Monumental Catenary Arch 631 Feet High

The Gateway Arch, St. Louis, Missouri
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Thanks for your attention.

Supplementary notes (and these slides) available at,

www.mikeraugh.org

For questions or comments, please write to Mike at:

Auranteacus@gmail.com


